# 超音波 NDT/NDE におけるシミュレーション技術の進展と応用

シミュレータによる超音波伝搬の可視化とその活用

ジャパンプローブ(株) 田中 雄介

### Ultrasonic Visualization by a Simulator and its Utilization

Japan Probe Co., Ltd. Yuusuke TANAKA

📕 キーワード) 超音波, エッジ波, 連続波, シミュレーション, 可視化, 指向性

# 1. はじめに

シミュレーションはある理論に対して入力、条件を与えた 時に結果を計算で出力するものであり,設計や評価などに広 く利用されている。シミュレーションの理論は世の中のすべ ての現象を再現しているわけではなく、結果も近似値である。 超音波の伝搬理論についてもエッジ波の振幅などは完全には 解明されていない。完璧に実測と合わないと使えないという わけではなく、シミュレーション結果のどの部分が設計、評 価に使えるかを判断してシミュレーションを活用する必要があ る。これまでに超音波伝搬の可視化としてパルス波と連続波 の超音波伝搬の違い<sup>1)</sup>,集束超音波探触子の焦点位置評価<sup>2)</sup>, 探触子の送信と受信の指向性について報告してきた<sup>3)</sup>。また. アンカーボルト内の超音波伝搬についてシミュレーションを 用いた分析を報告した<sup>4)</sup>。本稿では探触子から送信される超 音波,シミュレーション結果と実験結果の異なる部分,パル ス波と連続波の現象、探触子の送信と受信の指向性、シミュ レーションによる集束超音波の設計と評価について述べる。

# 2. 探触子から送信される超音波と理論,シミュ レーション,実際の違い

探触子から送信される超音波は図1のような振動面と同じ 形状の直接波と直接波端部から発生するエッジ波である。こ の波が無限にあると連続波になる。しかし,ほとんどの教科 書<sup>5)</sup>にある理論は波動工学が基になっている。そのため連続 波の現象で説明しており1波のパルス波について記述された ものは少ない<sup>6)、7)</sup>。また,エッジ波は音圧の急激な変化が ある部分から発生するという説がある<sup>8)</sup>。例えば,図2のよ うに物体に音が遮られた場合も音圧の急激な変化があるので 透過部分と反射部分の端部からエッジ波が発生する。エッジ 波は直接波より音圧が小さくなり広がるほど音圧が低下する。 しかし,教科書では直接波とエッジ波の音圧が同じ前提で計 算されており,さらに最大値を2や1の固定値で正規化され



ている<sup>6)</sup>。本稿では中畑らによる動弾性有限積分法でシミュ レーションを行うシミュレータ「SWAN21」(イーコンピュー ト社製)を用いてパルス波と連続波でのシミュレーション結 果を述べる。図3は平面振動子に正パルスを印加したときの シミュレーション結果である。白が正の振幅、黒が負の振幅 である。平面の直接波と外側には直接波と同位相のエッジ波, 内側には逆位相の負のエッジ波が発生していることが確認で きる。シミュレータでの注意点は波数無限の連続波でしか行 えないものがあることである。使用するシミュレータが連続 波の定常状態しか計算できないか,パルス波の過渡応答も計 算できるかを知る必要がある。また, 音圧などの振幅は相対 的な値であり、絶対値を求めるには圧電解析が必要である。 しかし、 圧電解析もほとんど連続波の定常状態で計算してい るという問題がある。さらにエッジ波の振幅は媒質により異 なるが完璧に再現はまだできない。騒音などの回り込みでは 粒子速度の勾配から評価を行うものがあるが<sup>9)</sup>,エッジ波へ



図3 エッジ波シミュレーション図

適用できるかは検討が必要である。

上記をまとめると教科書やシミュレーション,実際の計測 で気を付けることは

- 1. 使う理論やシミュレーションは連続波を前提にしたも のか、パルス波では適用できるか
- 2. 音圧などの振幅は直接波とエッジ波で同じか,ある値 を最大値として正規化されているか
- 3. シミュレーションの直接波,エッジ波などの振幅と実 際の振幅はどの程度異なるか

となる。重要なことは実際とシミュレーションとの違いを把 握して結果をどのように利用するかである。

# 3. パルス波と連続波での現象

# 3.1 サイドローブとゼロ輻射角

探触子から送信される超音波はパルス波と連続波で異なり、 連続波ではサイドローブやゼロ輻射角,探触子中心軸上の振 幅変動が発生する。図4は波数1と波数30のSin波を印加し たときのシミュレーション結果である。波数30では振幅変動 が発生し、サイドローブやゼロ輻射角のような現象が起こっ た。これを説明すると図5のようになる。片側だけ説明する が、前の直接波右側から発生した内側エッジ波と後の直接波 左側から発生した外側エッジ波が黒丸の部分で重なったとす る。それぞれ位相が逆なので単純に重なると振幅が低下する。 また、半波長ずれて重なると振幅が増大する。エッジ波の振 幅については正面に近いほど大きいので黒丸の部分は直接波



(a) パルス波(1波)





図5 エッジ波の重なりによる振幅変動



左側の外側エッジ波の方が直接波右側の内側エッジ波より振 幅が大きい。文献8)によると図6のような説明がされてい る。直接波が媒質を伝搬する時媒質が押されるが、端部では 直接波前方の媒質は押され(A),後方の媒質は引っ張られる (B)。そのため内外エッジ波は位相が異なり、エッジ波が広が るほど押される力,または引っ張られる力が低下する。従って, 図5の黒丸部分では外側エッジ波の振幅が大きくなる。また, 先頭付近と最後尾付近の波はエッジ波が重ならないので振幅 変動が発生せず、図4でもそうなっている。エッジ波の重な りは探触子中心軸上でも発生するが、次節で述べる。

#### 3.2 探触子中心軸上の振幅変動

図5の探触子中心軸上の灰色丸部分では直接波とエッジ波 が重なる。それぞれ逆位相であるので伝搬距離差が半波長に なった時に振幅が増大し、単純に重なった場合は振幅が低下 する。図7のように考えるとエッジ波の伝搬距離 E と直接波 の伝搬距離Xの差E-Xが半波長になった時に振幅が増大す る。 $E - X i \lambda/2$ になるときは式(1)

| $X = \frac{1}{4} \left( \frac{w^2}{\lambda} - \lambda \right)$ |  | (1) |
|----------------------------------------------------------------|--|-----|
|----------------------------------------------------------------|--|-----|



となり、振動子幅を直径 D にして λ/4 が小さいので省略する と近距離音場限界の式となる。ここで振動子幅 10mm, 周波数 2MHzの探触子での中心軸上のシミュレーションにおける振幅 は図8のようになる。水中音速1500m/s,波長を0.75mmと すると近距離音場限界は33mmで、パルス波(1波)と連続 波(30波)の Sin 波を送信した。近距離音場限界付近で連続波, パルス波共に振幅が大きくなり、連続波では振幅変動が発生し た。パルス波での探触子中心軸上の振幅を図9に示す。距離 10mm では直接波とエッジ波がそれぞれ逆位相で検出され、近 距離音場限界でそれらが合成されて振幅が大きくなる。図10の



図7 直接波とエッジ波の重なる距離

シミュレータによる超音波伝搬の可視化とその活用



図8 探触子中心軸上の振幅 (シミュレーション)



図9 探触子中心軸上における直接波とエッジ波の重なり





図10 30 波における振幅変動

30 波では後ろの波の振幅が変動していることがわかる。連続波 の振幅として図 10 の A, B の位置のように後ろの波の振幅を 記録した。振幅が増大する点としてはE - Xが $\lambda/2$ や 3 $\lambda/2$ , 5 $\lambda/2$ になる点,振幅が減少する点としてはE - Xが $\lambda$ の整数 倍になる点である。超音波の伝搬と共にE - Xの差が小さく なるので,近距離音場限界とは直接波とエッジ波が重なって振 幅が大きくなる一番遠い位置になる。

#### 3.3 実験との比較

連続波ではサイドローブとゼロ輻射角,探触子中心軸上の



振幅変動について実験で現象を確かめた。直径 10mm,周波 数 5MHz の探触子で水中において 30 波の超音波を送信し, ハイドロホンで音場を計測した。図 11 に計測結果を示す。サ イドローブやゼロ輻射角が観測でき,波の先頭では振幅変動 が発生していないことがわかる。また,ゼロ輻射角の音圧が 0 でないこともわかる。次に直径 10mm,周波数 2MHz の探 触子で中心軸上の振幅をハイドロホンで計測した。図 12 の結 果で連続波では近距離で振幅が変動し,近距離音場限界付近 でパルス波,連続波共に振幅が大きくなった。

これらのシミュレーション,実験結果から直接波よりエッジ波の振幅が小さい,連続波では直接波とエッジ波が重なって振幅が変動する,近距離音場限界付近で振幅が大きくなるということがわかる。

#### 3.4 グレーティングローブ

フェーズドアレイ走査においてピッチが大きくなると送信 方向以外にも強い超音波が発生するグレーティングローブと いう現象がある。これも連続波の現象である。フェーズドア レイ自体がエッジ波の広がりを利用しており,前のエッジ波 が後ろのエッジ波と重なって発生する。図13に水中5MHz, ピッチ0.5mm,走査角度30度で波数1波,5波,20波にお ける超音波伝搬図を示す。グレーティングローブの発生条件 は式(2)

$$d > \frac{\lambda}{1 + \sin\theta} \tag{2}$$

 $d:素子ピッチ \lambda: 波長$ 

 $\theta$ :アレイ走査角度

で表され, ピッチが 0.2mm より大きいとグレーティングロー ブが発生する。図 13 より,波数1 ではグレーティングローブ が発生せず,波数が増えた時に先頭より後の波でグレーティ ングローブが発生していることがわかる。 解説



(a) 波数1



(b) 波数 5



(c) 波数 20

図 13 波数の違いによるグレーティングローブの変化

#### 3.5 媒質によるエッジ波発生量の違い

シミュレーションでエッジ波がサイドローブや探触子中心 軸上の振幅変動を発生させると述べたが、シミュレーション で完璧に計算できないことがエッジ波の発生量である。探触 子中心軸上において近距離音場限界付近で直接波とエッジ波 が重なって振幅が大きくなる。しかし、振幅の増加度合い が水中と空気中では異なる。図14は空気中と水中でのパル ス波を送信したときの探触子中心軸上の振幅である。空中 では250kHz,直径20mmの探触子、水中では2MHz,直径 10mmの探触子を使用した。横軸は近距離音場限界を1とし て比を表し、縦軸は近距離音場の振幅で合わせてある。空中



図 14 水中と空中の探触子中心軸上の振幅変化

だと近距離音場限界で18%の振幅上昇,水中だと66%の振幅 上昇が発生した。従って,エッジ波の発生量は水中が空中よ り多く,媒質により異なる。シミュレーションだと30%程度 の振幅上昇なので実際に使用している機器と比較してシミュ レーション結果をどのように補正して考えるかが必要になる。 従って,用途に応じてシミュレーション結果をどのように扱 うかが重要になる。

### 4. 探触子の指向性

超音波探触子の指向性はベッセル関数で表現されており、相 反定理から送信と受信は同じ特性であるとされる<sup>10)</sup>。しかし, 文献3)でも示したように送信と受信では指向性が異なる。 送信指向性はエッジ波の広がりで決まり、媒質によりエッジ 波の発生が異なるので空中は水中より音が広がりにくい。受 信指向性は現象が異なり,信号の伝搬距離差で決まる。 例え ば 5MHz の平面波が水中において図 15 のように入射角 30 度 で探触子に入射する時の受信強度のシミュレーション結果を 図16に示す。振動子幅0.2mmと10mmでは振幅が28倍異 なり、振動子幅 0.2mm のほうが大きい。これは図 17 のよう に4点の出力で考えると各点に到達する超音波に時間差がある ため、半波長ずれた信号が打ち消し合ったためである。図18 に各点の波形と合成結果を示す。各点への到達距離が半波長 ずれるため信号が打ち消し合って最初と最後のピークだけ残 る。振動子幅を大きくしていくと図19のように振幅が低下し、 信号の波長が長くなることがわかる。シミュレーションによ り斜めからの信号は信号が打ち消し合うので振動子幅が小さ いほど指向性が低下するということがわかる。受信時の指向



図 15 水中で斜めから超音波を受信



図16 振動子幅と受信波形







図18 各波形出力点の波形と合成波形



図19 各振動子幅と受信波形

性と説明したが,要は大きな受信探触子は余計な信号を多く 拾って信号が合成されてしまうので望ましくないということ である。

### 5. 集束超音波の設計と評価

シミュレーションの活用事例として集束超音波探触子の設 計について述べる。集束超音波探触子は音響レンズ型,凹面 振動子型の2種があるが,基本的な考え方は同じである。音 響レンズ型を例にするが,集束超音波探触子は焦点位置に波 動による以下の式(3)

 $f = \frac{r}{1 - \frac{c_2}{c_1}}$ (3)

f:焦点位置 r:レンズの曲率半径

で計算されるが<sup>11)</sup>,この式には内側エッジ波の影響が入って いないので焦点はこの式より手前になる。凹型振動子につい ても曲率半径中心より焦点が手前になるが、エッジ波の影響 である。図 20 に示す開口角が小さくなるほどエッジ波の影 響が大きくなる。平面探触子では近距離音場限界付近で振幅 が大きくなるが、エッジ波の影響が100%である。平面では 開口角が0度である。開口角が大きくなるほど焦点位置の直 接波の影響が大きくなる。エッジ波の影響が大きくなると式 (1)に示すように波長が焦点位置に影響する。シミュレーショ ンで直径 6.4mm, 音響レンズの曲率 R38mm (開口角 9.7 度) と10mm(開口角 37.3 度)で焦点位置を調べた結果を表1に 示す。開口角 9.7 度で式(3)では焦点位置が 90mm であるが, シミュレーションでは 10 MHz で 43 mm, 5 MHz で 30 mm と なった。開口角 37.3 度では焦点位置は周波数によらず 21 mm であるが,式(3)より手前である。エッジ波の影響が大き くなるほど周波数が焦点に影響し、式(3)の値と異なって くる。開口角が 9.7 度の場合は 10 MHz から 5 MHz への変化 で焦点が13mm近くなった。一方,開口角が37.3度の場合は 周波数による焦点の変動はなかった。



図 20 集束超音波探触子の焦点変化と開口角

### 表1 音響レンズ型集束超音波探触子の焦点位置

| 開口角<br>(度) | 周波数<br>(MHz) | 式(3)の<br>焦点(mm) | 焦点位置 (mm)<br>(シミュレーション) | 焦点位置 (mm)<br>(実験) |
|------------|--------------|-----------------|-------------------------|-------------------|
| 9.7        | 10           | 90              | 43                      | 51                |
| (R38 (mm)) | 5            | 90              | 30                      | 27                |
| 37.3       | 10           | 24              | 21                      | 20                |
| (R10 (mm)) | 5            | 24              | 21                      | 21                |

実際に10MHz,直径 6.4mm,R38mm で音響レンズ型探 触子を作ると焦点位置が51mmとなり8mmも遠くなった。 これは周波数の評価法の違いでJIS では平面板の反射信号を FFT して評価するが,波長というのは波が一回振動する時に 進む距離であり時間差や距離差である。図21 に焦点位置に おけるハイドロホンの受信波形を示す。近距離で直接波1と エッジ波2が観測され焦点位置で合成される。ピークA,B, Cは別の信号であり,ピークAが直接波,Bが直接波とエッ ジ波の合成,Cがエッジ波の信号である。表2にガラス板の 反射,ステンレス球の反射,ハイドロホンの受信信号でFFT と時間差からの周波数を示す。信号の大きなピークはB-C間 でその時間差は0.038µs でB-C間は半周期なので2倍して逆 数にすると13.2MHz である。JIS の平面板の反射信号をFFT した時の中心周波数では9.2MHz だったので4MHz も高い。 解説



図 21 R38mm, 10 MHz ハイドロホン受信波形

表 2 R38mm 音響レンズ集束超音波探触子の周波数計測

| (M    | Hz)   | ガラス板           | ステンレス球 | ハイドロホン               |
|-------|-------|----------------|--------|----------------------|
| EET   | ピーク   | 8.4            | 11.4   | 11.2                 |
| FFI - | 中心    | 9.2 <b>JIS</b> | 11.2   | 11.4                 |
| 時間差 - | A-B 間 | 11.1           | 12.2   | 12.8                 |
|       | B-C 間 | 9.3            | 12.8   | 13.2 <mark>適用</mark> |

表3 B-C間時間差からの周波数と焦点位置

|                | 実験   | シミュレーション |
|----------------|------|----------|
| 焦点位置 (mm)      | 43   | 43       |
| 周波数 B-C 間(MHz) | 9.6  | 9.4      |
| 焦点位置 (mm)      | 51   | 52       |
| 周波数 B-C 間(MHz) | 13.2 | 12.7     |

この B-C 間の周波数をシミュレーション(9.4 MHz)と実験 (9.6 MHz) で合わせると焦点位置が43 mm となった。表2, **表3**のように B-C 間の周波数を合わせると実験とシミュレー ションの焦点が合う。従って、シミュレーションのどの部分 を合わせて設計するかを適切に考えることで、シミュレーショ ンを実際の設計に役立てることができる。

# 6. おわりに

シミュレーションにより超音波の現象を可視化し、パルス 波と連続波における現象、教科書とシミュレーション、実際 の違いを説明した。シミュレーションと実際が異なる事例と してエッジ波の振幅を述べた。シミュレーションによる超音 波の解析結果の一例として探触子の指向性を説明し、送信時 と受信時が異なることを述べた。シミュレーションの活用事 例として集束超音波探触子の設計について説明し、どのパラ メータを合わせることで焦点位置が合うかを述べた。

### 参考文献

- 田中雄介,大平克己,小倉幸夫:パルス波と連続波の超音波 伝搬の可視化,アコースティックイメージング研究会資料, AI-2016-26, (2016) ジャパンプローブ HP http://www.jp-probe.com/technology/up\_img/1540432454-182171\_f1.pdf 2018 年 10 月 25 日確認
- 2)田中雄介,阿部 晃,北田純一,小倉幸夫:集束超音波探触子 の焦点位置と周波数評価,アコースティックイメージング研 究会資料,AI-2017-25,(2017) ジャパンプローブ HP http://www.jp-probe.com/news/up\_img/1509434843-369075\_ fl.pdf 2018年10月25日確認
- 3)田中雄介,小倉幸夫:超音波探触子の送信時と受信時の指向性, アコースティックイメージング研究会資料,AI-2018-24 ジャパンプローブ HP http://www.jp-probe.com/news/up\_img/1539911617-126848\_

f1.pdf 2018年10月25日確認

- 4)田中雄介,星野秀和,小倉幸夫:超音波による接着系アンカーボルトの非破壊検査,第25回超音波による非破壊評価シンポジウム講演論文集,pp.13-18,(2018)ジャパンプローブHP
   http://www.jp-probe.com/news/up\_img/1517816308-666163\_
- f1.pdf 2018年10月25日確認
  5)日本非破壊検査協会,超音波探傷試験Ⅲ 2001年度版第3刷, pp.67-69,(2004)
- 6) 超音波便覧編集委員会編, 超音波便覧, 丸善, pp.31-33, (1999)
- 7) 日本音響学会編,音響学入門ペディア,コロナ社, pp.184-187, (2017)
- 8) 宇田川義夫, 三原 毅:探触子の音波送信原理, 超音波による非破壊評価シンポジウム講演論文集, 16, pp.57-62, (2009)
- 9) Y. Kawai and M. Toyoda : Development of edge-effect suppression barriers, AST, 35, pp.28-34, (2014)
- 10) 実吉純一,菊池喜充,能本乙彦:超音波技術便覧 改訂新版, 日刊工業新聞社, pp.23-59, (1968)
- 11) 日本非破壞検查協会,超音波探傷試験Ⅲ 2001 年度版第3刷, p.47, (2004)



 田中 雄介 ジャパンプローブ(株)
 (232-0033 神奈川県横浜市南区中村町 1-1-14)
 研究開発センター 副主任研究員
 2012 年ジャパンプローブ(株)入社,医用 超音波,空中超音波,超音波伝搬解析の研 究に従事。博士(工学)
 URL: http://www.jp-probe.com/